

EXECUTIVE SUMMARY JW MARRIOTT, GRAND RAPIDS, MI October 27, 2006

GREG KOCHALSKI Structural Advisor: Boothby

Purpose:

The goal of this report is to investigate alternative floor systems for the flat plate system used in the JW Marriott. Once the alternatives have been analyzed, I will determine which systems are and are not viable based on numerous economic, construction, structural, and architectural criteria.

Alternative Systems:

Five alternate systems were investigated as alternatives for the JW.

- 1. Two Way Flat Slab with Drop Panels
- 2. Two Way Flat Plate
- 3. One Way Flat Plate with Beams*
- 4. Hollow Core Plank
- 5. Composite Steel

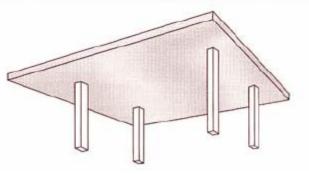


Figure A. JW Marriott and Flat Plate system

Conclusion:

The current one way flat plate system performs best to meet the vision of the architect. This includes unobstructed views from the guest rooms, greater license with interior partitions, freedom with ceiling finishes, and mechanical/electrical system routing ease. The high aspect ratio, >2, lends itself best to the system used. With a few of the alternate systems it is possible to limit interior partition width to the current10 inches. However the material and construction savings do not outweigh the uniformity of construction and architectural sacrifices. In addition the bay size and floor loads are not large enough to take full advantage of the two way systems' benefits. The most viable alternatives are two way flat plate and composite steel, due to reduction in slab thickness and improved seismic response, respectively. Simple construction techniques and formwork drive project costs down. Smaller vertical runs increase economic gains with other building systems. Given the unique shape of the JW Marriott I believe that the existing floor system is the best choice.

TABLE OF CONTENTS

Introduction	1
Existing Structural Description	2
Alternate Structural Systems	3
Two Way Flat Slab with Drop Panels	4
Two Way Flat Plate	5
One Way Flat Slab with Beams	6
Hollow Core Plank	7
Composite Steel	8
Comparison and Conclusion	9
Appendices	10

INTRODUCTION

Description:

The JW Marriottis a 24 story hotel currently under construction in Grand Rapids, Michigan and is being constructed under the 2003 Michigan Building Code. The 2003 MBC references the IBC 2003 design loads for buildings. In this report I will study the typical floors from level 5 through 22. On these levels the code specifies 40 psf live load. This live load matches the designer's choice. The designer also specified 20 psf dead load for the partitions, flooring, MEP, etc. This is a generous allowance in part because the interior spaces had yet to be designed once erection began. The code calls for 12 psf for the partitions used. This allows the designer 8 psf remaining for the flooring and MEP, which usually is 3 psf and 5 psf. These loads will be used in the determination of alternate floor systems throughout this report.

Structural Codes:

Building Code
 Michigan Building

Michigan Building Code 2003. The 2003 Michigan Building Code is an adoption of the IBC 2003 with state amendments.

- *Structural Concrete* ACI 318-2002. Building Code Requirements for Structural Concrete.
- Concrete Masonry ACI 530-1999. Building Code Requirements for Masonry Structures.
- Structural Steel

LRFD Specification for Structural Steel Buildings, 2nd Edition. AISC.

EXISTING STRUCTURAL DESCRIPTION

Existing System:

The existing floor system of the JW is a one-way reinforced concrete flat plate from floors 5 through 22. The slab is 7.5 inches thick and uses 5000 psi strength concrete (unless otherwise noted). Normal weight concrete was used. 14 openings in the slab, located in the main corridor, allow for mechanical duct access. The overall shallow depth of the system permits greater flexibility for the architect's interior design. The size of the typical bay is a trapezoid with vertical lengths 10'-7" and increasing to 17'-9" and a horizontal length of 35'-3". The typical bay studied in this report has been highlighted in Figure 1.

Advantages:

The flat plate system in the JW allows for maximum freedom of design of partitions and ceiling finishes. A shallow floor system has significant savings in MEP runs from floor to floor. Simple formwork reduces construction costs by increasing uniformity. Guest views are not obstructed by edge beams and create larger glass windows to view the skyline.

Disadvantages:

The higher aspect ratio of the bay gives way to larger flexure and shear forces in the slab. The thickness is governed by the longer span and can result in economy loss.

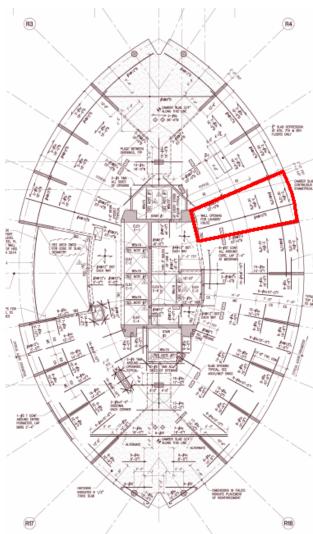


Figure 1. Typical Bay.

ALTERNATE STRUCTURAL SYSTEMS

Five alternate systems were investigated throughout this report for the JW. For those marked with an asterisk, additional columns were added (Fig. 2 shown in green) to achieve a suitable aspect ratio or overall system depth and subsequently making one bay into two.

- Two Way Flat Slab with Drop Panels*
- Two Way Flat Plate*
- One Way Flat Plate with Beams*
- Hollow Core Plank
- Composite Steel

Figure 2. Bay with Added columns.

In order to make these investigations possible several reference handbooks and software programs were used.

- References
 - o CRSI Handbook 2002
 - PCI Design Handbook 6th Edition
 - AISC Specification for Structural Steel Buildings 13th Edition
 - o RS Means Assemblies Cost Data, 2006 Edition
 - o Underwriters Laboratories Fire Resistance Volume 1. 2001
- Software
 - o RAM Structural System
 - o Enercalc

The alternate systems were designed with the hopes that the added columns would not disrupt the current floor plan and be small enough to fit within existing partitions. A few systems met this goal, others did not. The wall columns for this report were assumed to be replaced by a square shape and located at the perimeter. The existing wall columns are 10 inches wide and made this goal difficult to reach. Alternate system overall depths were designed attempting to match the 7.5 inch flat plate depth of the JW. Due to the reduction in spans, most systems were able to accomplish this.

ALTERNATE 1: TWO WAY FLAT SLAB WITH DROP PANELS

This system uses two-way reinforced slab with drop panels only. In order to achieve an aspect ratio necessary to utilize this system two columns were added at the mid-span of the existing system (Fig. 2) and one column in the South West corner. Column capitals were not used due to higher costs. The design given in the CRSI handbook gives the minimum drop panel size per ACI 13.4.7.

The larger, exterior bay governs the sizing of the slab, columns, and reinforcing. The interior bay shall be built to the specifications of the larger bay to increase constructability and form efficiency.

Calculations may be found in *Appendix A*.

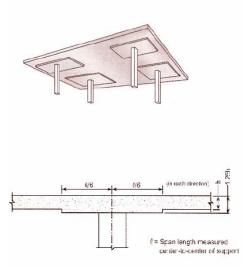


Figure 3. Drop Panel Detail.

Chapter 10 of the CRSI Handbook was used to determine the appropriate size, details, reinforcing, drop panels, etc.

Advantages:

For heavier loads and longer spans, the flat slab will require less reinforcing and concrete. The slight added cost of forming drop panels has savings over a flat plate in the amount of rebar and concrete needed. In addition smaller columns can be utilized. These designs are most efficient for bays that are square. Drop panels help to provide shear strength around the column and guard against "punching shear."

Disadvantages:

Unsightly drop panels around columns have potential to disrupt interior designs and possibly even floor plans. In a bay with span of roughly 18 ft. there is not enough span to take full advantage of the cost savings when compared to a flat plate. For a live load of 50 psf or less a flat plate is only economically viable with spans between 25 and 30 ft. Formwork costs are approximately 47% of the total system cost.

The addition of columns will limit partition placement and has potential to alter floor plans.

ALTERNATE 2: TWO WAY FLAT PLATE

This system was chosen in order to study the effects of added columns and decreased spans on the overall flat plate depth. Significant savings in depth should occur now that two-way action can occur. In addition the span has been cut in half.

Similar to the drop panel design, the larger exterior bay governs the sizing of the slab, columns, and reinforcing. The interior bay shall be built to the

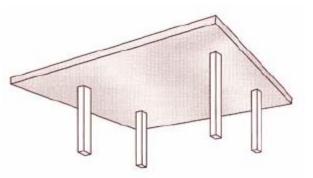


Figure 4. Flat Plate System.

specifications of the larger bay to increase constructability and form efficiency.

Calculations may be found in *Appendix B*. Chapter 9 of the CRSI Handbook was used to determine the appropriate thickness, details, reinforcing schedule, etc.

Advantages:

Primarily found in hotels and residential medium to high rise structures, this system has advantages in both construction and architecture. The simple construction and formwork reduces finishing costs since the finish may be applied directly to the underside of the slab. This also allows greater freedom with partition and aesthetic design. Significant cost savings are also gained in the low story heights made possible by the shallow floor system. Smaller vertical runs of cladding, partitions, mechanical ducts, and plumbing all translate into greater savings.

Disadvantages:

The flat plate system is only economical for shorter spans. With a live load of 50 psf the economical span is a mere 20 to 25 ft. With larger spans deflection criteria ceases to govern and punching shear or bending moments begin to control the design. Floor panels with an aspect ratio of 2 tend to have a 30% greater cost than those with an aspect ratio of 1. The thickness of a rectangular span would be governed by the longer span and results in economy loss.

Additional columns will limit the placement of partitions and other building systems.

ALTERNATE 3: ONE WAY FLAT SLAB WITH BEAMS

The addition of beams to the flat slab system was done in order to remove the unsightly drop panels from view of the guests. The beams shown in Figure 5 are wider than the column, but in this design it was attempted to keep the base of the beam to a maximum of 10 inches, the same width of the JW's existing wallcolumns. Savings in thickness should occur in this system due to the addition of flexural members and shorter spans.

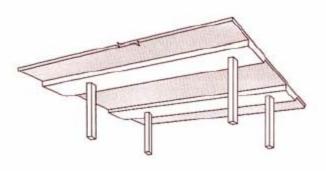


Figure 5. Flat Slab with Beams.

The larger span will control the overall design of the beams and the slab in the two bays. Formwork efficiency can only be achieved if this is the case.

Calculations may be found in *Appendix C*. Chapter 7 of the CRSI Handbook was used to determine the appropriate thickness, details, reinforcing schedule, etc. of the slab. The provisions set forth in Chapter 10 of the ACI code were used to design the beams.

Advantages:

The added flexural stiffness of the beams will have savings of slab depth when compared to a flat plate. Limiting the beam width to 10 inches, although not always possible, will allow the architect to hide the beams in the interior partitions of the JW.

Disadvantages:

The presence of beams complicates the routing mechanical ducts, plumbing systems, and limits the placing of interior partitions. The necessary formwork for the beams will slow the production schedule and add formwork, labor, and schedule costs to the project. The additional columns with further restrict the freedom of partition placement.

ALTERNATE 4: HOLLOW CORE PLANK

This system utilizes the same beam layout as floors 1 through 4. The addition of a column in the Southwest corner of the bay (Fig. 2) was necessary to carry out the design. Although the planks are capable of longer runs, spanning two bays for roughly 35 ft. was not reasonable due the unique shape of the JW Marriott.

The larger exterior span will control the overall size of the the plank. Formwork efficiency can only be achieved if this is the case.

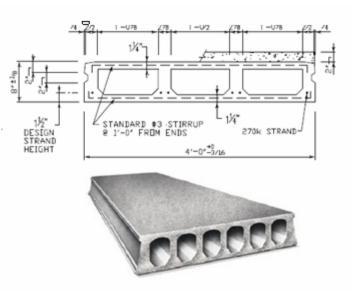


Figure 6. Hollow Core Plank.

Calculations may be found in *Appendix D*. Chapter 2 of the PCI Design Handbook was used to determine the appropriate thickness, details, reinforcing schedule, etc. of the slab. The provisions set forth in Chapter 10 of the ACI code were used to design the beams.

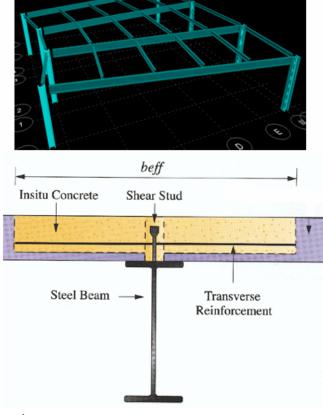
Advantages:

Hollow core plank provides a finished ceiling surface that can be used as installed or easily painted or sprayed to match the specifications of the architect. The plank may be drilled to install dropped ceilings, lighting, electrical, and mechanical fixtures. The hollow cores give the plank superior acoustic properties.

Higher strengths, longer spans, desirable fire ratings, and increased durability may be reached due to precision casting done in a controlled environment. With no curing time, construction may continue in any weather or season.

Disadvantages:

The beams supporting the plank may influence partitions and building system designs. Additional formwork can be expensive and inhibit the construction schedule. This system may not be economical given the shorter spans of the JW's typical size bay. Design changes may be hazardous with lead-in times that accompany hollow core construction.


The addition of one column in the Southwest corner may disrupt partition placement.

ALTERNATE 5: COMPOSITE STEEL

Composite steel allows for spans similar to actual spans in the JW. The composite action of the concrete helps to reduce the size of the steel member needed to carry the loads. This helps to reduce the overall depth, a common problem with steel systems.

A RAM model was built for three typical bays (shown in Figure 7) in order to determine the sizes of the steel members and required shear studs. The Vulcraft 2.0VL deck with a 3 inch topping spans 7 ft and although larger spans are available, the goal of this investigation was to determine only the applicability of the system itself.

Calculations may be found in *Appendix E*. RAM Structural System software was used to determine the appropriate member size and shear stud schedule. The provisions set forth in the AISC

Specification for Structural Steel Buildings, 13th Edition was used to RAM model and Composite Beam. design the beams.

Figure 7.

Advantages:

Added flexural resistance of the concrete reduces member sizes, floor system depths, and steel tonnage. Construction is simple and fast. Time consuming activities such as shoring and preparing formwork are eliminated. A 2 hour fire resistance rating will be supplied by the slab, depending on thickness. With less concrete and a lower building mass, better seismic response periods can be reached.

Disadvantages:

Long lead-in times are needed in order to accommodate the fabricator. This also makes change orders difficult. As spans grow it becomes difficult to ensure the absence of camber needed to make this system work. Cost of steel construction is high and not generally economical for mid rise structures such as the JW Marriott.

COMPARISON AND CONCLUSION

System	Existing	Flat Slab w	2 Way	Flat Slab	Hollow	Comp.
-	C	Drop Panels	Flat Plate	w Beams	Core	Steel
Weight	93.75	75	93.75	68.75	74	62.5
(psf)						
Slab Depth	7.5	6	7.5	5.5	4	5
(in.)						
Largest	7.5	8.5	7.5	18	24	W16x26
Depth						d = 16.7
(in.)						
Column Size	10x140	12x12	10x10	10x10	24Φ	W14
(in.)						
Construction	Medium	Medium-	Medium	Medium-	Easy	Medium
Difficulty		Hard		Hard		
Long Lead	No	No	No	No	Yes	Yes
Formwork	Yes	Yes	Yes	Yes	No	No
Fire Rating	>2	>2	>2	>2	1-2	1.5-2
(hrs.)						
Cost per ft ²						
(USD)						
Materials	5.45	5.75	5.45	5.30	15.60	1225
Labor	7.20	7.55	7.20	10.00	5.55	6.45
Total	12.65	13.30	12.65	15.35	21.15	18.70
Foundation	-	Little-	None	Little	Little-	Yes*
Impact		None			None	
Viable	-	No	Yes	Yes	No	Yes
Alternative						
Further Study	-	No	Yes	No	No	Yes

*Less building mass from the change to a steel system will reduce soil stresses and allow for foundation designs.

Conclusion:

The flat plate performs its purpose best to meet the vision of the architect. This includes unobstructed views from the guest rooms, greater license with partitions, freedom with ceiling finishes, and mechanical/electrical system routing. The high aspect ratio, >2, lends itself best to the system used. With a few of the alternate systems it is possible to limit interior partition width to the current10 inches. However the material and construction savings may not outweigh uniformity of construction and architectural costs. In addition the bay size and floor loads are not large enough to take full advantage of the two way systems investigated. The most viable alternatives are two way flat plate and composite steel, due to reduction in slab thickness and improved seismic response, respectively. Simple construction techniques and formwork drive project costs further downward with the current system. Smaller vertical runs increase economic gains with other building systems. Given the unique shape of the JW Marriott I believe that the existing floor system is the best choice.

APPENDICES

Appendix A: Two Way Flat Slab with Drop Panels	11
Appendix B: Two Way Flat Plate	14
Appendix C: One Way Flat Slab with Beams	17
Appendix D: Hollow Core Plank	21
Appendix E: Composite Steel	29

This page is intentionally left blank.

TWO WAY FLATSLAB	(DEOF HONCES)	SPAN EL 18
THILENESS B/W		
DROD PANELS	6"	
CAPACITY	100 752	
EXT SOP PANEL		
C.S. BARS		
TOP EXT	12#4	
Bot	11 #4	
TOPINT	12#4	
MS BARS		
BOT	12#3	
TOPINT	9#4	
SODROP PANEL		
DEPTH		
WIPTH	2.5"	
COL SIZE	1.2."	
	1.6	
INT SQ PANEL		
LOL STEP BARS		
M BOT	12#4	
	13#3	
MS BARS		
TOP	9#4	
Bot	11 #3	
CO OF STAF AS 617 DANFI		
SQ D. P. * STAR AS ELT PANEL		
COL SIZE	in Il	
it lac	12"	
		1

E

1000	4444	16 16 15 15 15 16 16 16 15 15 15		15 15 15 15 15 16	Grade (span cc. $l_1 = l_2$ (ft)
- Aller	100 200 300 400 500	100 200 400 500 200 200 300 400 500	100 200 400	100 200 300 400 100 200 300	e 60 Bars Factored Superim- posed Load (psf)
1 CO LONG	2.00 3.00 4.00 5.00 6.00	2.00 2.00 4.00 5.00 2.00 2.00 2.00 5.00 5.00	1.50 3.50 5.50 2.50	1.50 2.50 3.50 4.50 1.50 2.50 5.50	Squa Pa Depth (in.)
	5.66 5.66 5.66 5.66 6.80	5.00 5.00 5.00 5.00 5.33 5.33 5.33 5.33	5.66 5.66 6.80	5.00 5.00 5.00 5.00 5.33 5.33 5.33	Square Drop Same Same Same Same Same Same Same Same
	12 13 15	12 12 12 15 15 16	n. 12 13 15		AB ST $\zeta_c = 1$ Size (in.) ε
	0.606 0.747 1.102 1.285 1.392	0.648 0.828 1.003 1.187 1.056 0.626 0.625 1.143 1.334			
	11-#4 11-#4 11-#4 11-#4 11-#4 12-#4 13-#4	10-#4 10-#4 10-#4 10-#4 10-#4 10-#4 10-#4 10-#4 10-#4	12-#4 12-#4 12-#4 12-#4 12-#4 12-#4 12-#4 12-#4 12-#4	10-#4 10-#4 10-#4 10-#4 10-#4 111-#4 111-#4 111-#4	Top Ext.
	1 15-#3 1 12-#4 1 15-#4 1 15-#4 1 13-#5 1 17-#5	10-#3 8-#4 111-#4 11-#4 15-#4 12-#3 1112-#3 1112-#3 1112-#4 1113-#4	15-#3 13-#4 11-#5 14-#5 11-#4 11-#4 18-#4 13-#5	10-#3 15-#3 12-#4 12-#4 16-#4 13-#3 11-#4 14-#4 19-#4	REINFORCIN Column Strip ⁽¹⁾ Bot. Top
	3 11-#4 4 13-#4 4 15-#4 5 11-#5 5 12-#5	3 10-#4 1 10-#4 1 12-#4 1 13-#4 1 13-#4 1 13-#4 1 13-#4 1 13-#4 1 12-#5 1 10-#5 5 10-#5	112-#4 113-#4 115-#4 115-#4 116-#4 112-#4 1112-#4 114-#4 16-#4	10-#4 10-#4 11-#4 11-#4 11-#4 11-#4 11-#4 12-#4 112-#4 112-#4	FORCING rip ⁽¹⁾ Top Int.
	4 11-#3 4 8-#4 4 10-#4 5 13-#4 5 16-#4	1 10-#3 1 10-#3 1 10-#3 1 13-#3 1 13-#3 1 13-#3 1 10-#4 1 8-#5 1 11-#3 1 11-#3 1 11-#4 1 10-#5	0.704 12-#4 15-#3 12-#4 10-#3 9. 0.838 12-#4 13-#4 13-#4 15-#3 9. 1.002 12-#4 11-#5 15-#4 11-#4 10. 1.594 12-#4 11-#5 15-#4 11-#4 10. 1.594 12-#4 14-#5 16-#4 9.#5- 12. 0.665 12-#4 11-#4 12-#4 12-#3 9. 0.7779 12-#4 13-#4 12-#4 12-#4 9. 1.146 12-#4 13-#5 16-#4 12-#3 9. 1.146 12-#4 13-#5 16-#4 12-#3 9. 1.146 12-#4 13-#5 16-#4 12-#3 11.	9-#3 10-#3 8-#4 10-#3 10-#4 10-#4 10-#3 13-#3 9-#4 8-#5	STEM SQUARE EDGE PANEL With Drop Panels Column REINFORCING BARS (E. W.)
	3 9-#4 4 9-#4 4 9-#4 4 11-#4 4 13-#4	1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 8-#4 1 9-#4 1 9-#4 1 9-#4 1 9-#4 1 9-#4 1 9-#4 1 9-#4 1 9-#4 1 9-#4	9-#4 9-#4 10-#4 12-#4 9-#4 9-#4 11-#4	8-#4 8-#4 8-#4 8-#4 8-#4 8-#4 8-#4 10-#4	ANEL With Dr Middle Strip Bot. Top Bot. Int.
	1.69 1.98 1 1.98 1 2.31 1 2.92 1 3.60	1.66 1.76 1.76 1.2.09 1.2.56 1.2.56 1.3.09 1.1.65 1.1.65 1.1.89 1.1.89 1.1.89 1.1.85 1.1.89 1.2.13 1.3.33	1.70 2.04 2.49 3.08 1.76 2.16 2.72	1.60 1.76 2.13 2.60 1.67 1.95 2.24 2.90	Total Steel (psf)
	28.6 46.6 73.8 97.8 120.8	20.1 33.2 48.1 64.4 73.1 24.1 34.8 62.3 82.4 94.3	30.0 48.4 69.4 105.0 34.8 55.7 88.4	21.2 30.4 49.8 66.5 25.4 36.5 58.6 78.7	Edge (-) (ft-k)
	61.2 85.6 104.7 138.1 174.1	41.0 56.7 79.9 104.1 132.9 50.4 50.4 91.4 120.4	57.5 82.0 104.5 133.0 69.4 99.3 122.3	38.4 56.5 75.7 99.0 47.3 69.6 89.2 117.5	No Beams MOMENTS Bot. (+) (ft-k)
	83.2 118.7 151.1 185.6 220.8	56.0 79.5 103.6 127.1 153.0 68.7 99.0 125.2 153.7 185.1	79.3 1115.0 149.3 181.0 95.2 138.3 177.4	53.4 78.1 101.0 124.5 65.5 95.9 123.8 152.5	ns S Int. (-) (ft-k)
	100 200 300 400 500	100 200 300 400 500 200 300 400 500	100 200 300 400 100 200 300	100 200 300 400 200 200 200 300	Superim- posed Load (psf)
	12 15 17 17	12 15 15 15 15 15 15 15 15 15 15 15 16 16	112 115 117 117 117 112 115 115	12 15 15 15 15 15 15 16	Squar L _c = 1 Size (in.)
	0.303 0.569 0.784 0.762 0.696	0.324 0.631 0.616 0.593 0.528 0.313 0.667 0.689 0.667		0.4 0.3	Square Column $t_c = 12' \cdot 0'' (3)$ Size (in.) α_{ec} h = 6 in. = TOT
	11-#4 12-#4 14-#4 15-#4 11-#5	10-#4 10-#4 11-#4 11-#4 13-#4 11-#4 11-#4 11-#4	12-#4 12-#4 13-#4 13-#4 15-#4 12-#4 12-#4 12-#4 14-#4	10-#4 10-#4 10-#4 10-#4 12-#4 11-#4 11-#4 11-#4	RIOR PANEL (3) Col. S Col. S Top
	11-#3 8-#4 18-#3 14-#4 19-#4	110-#3 10-#3 8-#4 7-#5 9-#5 9-#5 9-#4 11-#3 112-#3 112-#3 113-#4	0.352 12-#4 11-#3 9-#4 11-#3 1.67 0.632 12-#4 15-#3 9-#4 10-#3 1.77 0.861 13-#4 11-#4 9-#4 13-#3 2.11 0.797 15-#4 16-#4 11-#4 18-#3 2.73 0.332 12-#4 13-#3 9-#4 18-#3 2.73 0.307 12-#4 18-#3 9-#4 11-#3 1.63 0.807 12-#4 18-#3 9-#4 12-#3 1.83 0.807 14-#4 9-#5 11-#4 9-#4 2.41	9-#3 10-#3 15-#3 20-#3 10-#3 10-#3 113-#3 10-#4	SQUARE INTERIOR PANEL With Drop Panels ⁽²⁾ N d Square Column REINFORCING BARS (E. W.) $\frac{l_c}{l_c} = 12'.0''$ ⁽³⁾ Col. Strip Mid. Strip $\frac{l_c}{(in, l)}$ α_{ec} Top Bot. Top Bot. Op
	9-#4 9-#4 9-#4 10-#4 8-#5	8-#4 8-#4 8-#4 8-#4 8-#4 8-#4 8-#4 8-#4	9-#4 9-#4 9-#4 11-#4 9-#4 9-#4 11-#4	8-#4 8-#4 8-#4 8-#4 8-#4 8-#4 8-#4 8-#4	With Drop Panels NFORCING BARS trip Mid. St Bot. Top BeptH BETWEEN
	11-#3 11-#3 12-#3 16-#3 8-#5	110-#3 110-#3 110-#3 110-#3 110-#3 111-#3 111-#3 111-#3 8-#4 111-#3	11-#3 10-#3 13-#3 13-#3 18-#3 11-#3 112-#3 9-#4	9-#3 9-#3 10-#3 13-#3 10-#3 10-#3 110-#3 11-#3	
(Co	1.63 1.79 2.05 2.53 3.22	1.67 1.68 1.91 2.28 2.68 1.54 1.75 1.90 2.39 2.88	1.67 1.77 2.11 2.73 1.63 1.83 1.83 2.41		No Beat V.) Total Steel (psf)
(Continued)	0.560 0.569 0.578 0.587 0.621	0.560 0.560 0.578 0.578 0.560 0.560 0.560 0.578 0.578 0.578	0.513 0.532 0.541 0.573 0.573 0.523 0.523 0.541 0.550	0.513 0.523 0.532 0.541 0.513 0.513 0.523 0.523 0.541 0.550	Concre sq. ft

edge

CONCRETE REINFORCING STEEL INSTITUTE

11-01

APPENDIX B

This page is intentionally left blank.

CONCRETE REINFORCING STEEL INSTITUTE

.

€#-6 &-#3

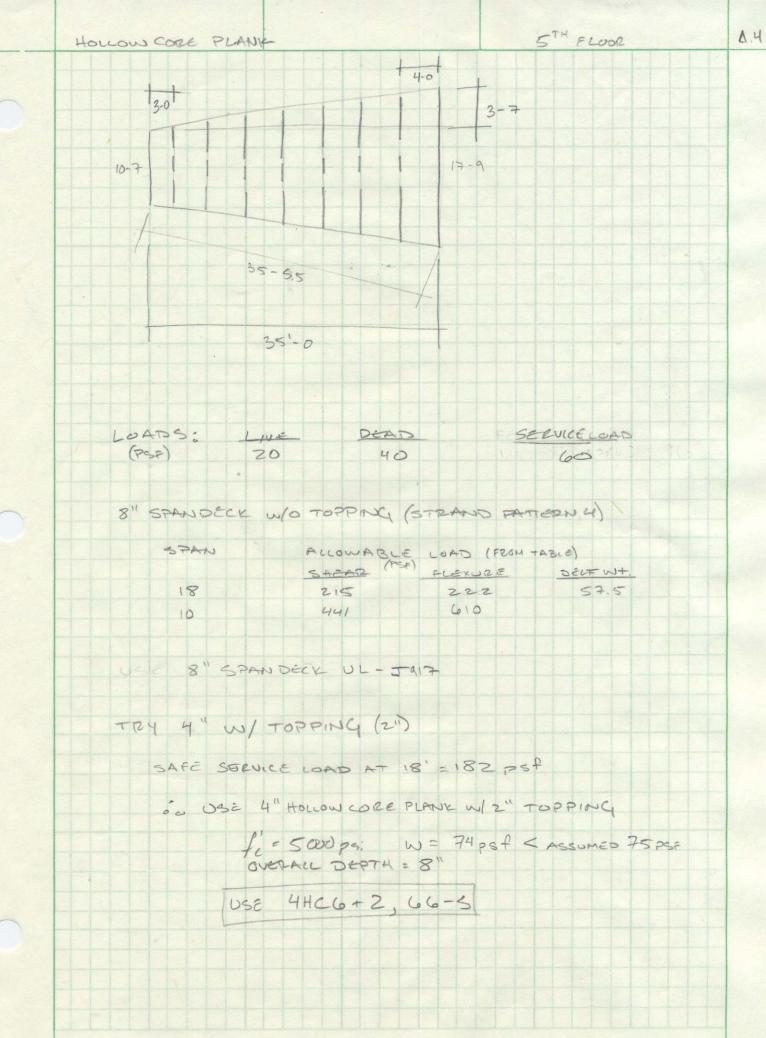
16	16	16	15	15	15	15		15		+	>	18	18	17	17	17	16	16	16	16	15	15	15	15	5	14	14	14	14	14	6½" = T	(ft)	$l_1 = l_2$	Cols.		SPAN	
150	100	50	300	250	200	150	100	50				100	50	150	100	50	200	150	100	50	250	200	150	100	50	250	200	150	100	50	TOTAL THICKNESS	(psf)	Load	posed	Super-	Factor- ed	WITHOU
12	10	10	22	18	13	12	10	10				19	10	21	15	10	22	17	10	10	21	18	= :	10	10	17	13	11	10	10	HICKNE	(in.)	le =	00	Flo	13	JT SHE
0.444	0.259	0.259	1.971	1.28/	0.576	0.461	0.20/	0.267			١	1.299	0.280	1.668	0.832	0.289	1.942	1.156	0.299	0.299	1.899	1.385	0.408	0.309	0 300	1.299	0.674	0.424	0.319	0.319	9	ate	$l_c = 12' - 0''$	Column	Floor (1)		(WITHOUT SHEARHEADS)
24	13	10	0	4/	27	20		. 00				49	15	55	33	13	56	40	14	=	52	41	18	12	•	37	23	15	10	7	SLAB	(ft-k)	Ext.	M	21	Total p	5
65	58	45	02	00	61	53	4/	37	1	17	65	63	61	61	57	51	58	55	55	42	55	51	53	45	34	47	46	42	36	27	130	(ft-k)	Int.	+ M	2.2	Total panel Moments	14
87	74	57	40	88	82	12	1 0	47	18	107	68	93	79	93	81	66	68	79	17	54	84	75	69	58		70	64	56	46	36		(ft-k)	1st. Int.	M	5.8	oments	
10-#4	10-#4	10-#4	13-#4	10-#4	9-#4	Y-#4	9-#4	9-#4		14-#4	12-#4	12-#4	12-#4	13-#4	11-#4	11-#4	13-#4	10-#4	10-#4	10-#4	12-#4	10-#4	10-#4	10-#4	10-#4	9-#4	9-#4	9-#4	9-#4	9-#4	Total.	Ext.	Tan	10.4		10-10	
8-#4	7-#4	11-#3	8-#4	13-#3	13-#3	1-#4	11-#3	11-#3	N.	10-#4	9-#4	9-#4	9-#4	9-#4	8-#4	12-#3	8-#4	13-#3	13-#3	10-#3	13-#3	7-#4	7-#4	11-#3	10-#3	7-#4 7-#4	11-#3	10-#3	9-#3	9-#3	1010	Bot.		Column Strip	Each		
14-#4	-	-	c#-01			-	-		114	12-#5	15-#4	16-#4	14-#4	16-#4	14-#4	11-#4	10-#5	14-#4	12-#4	10-#4	10-#5	13-#4	12-#4	10-#4	10-#4	12-#4	11-#4	10-#4	9-#4	9-#4	1941	Int.	Ten	rip		Reinforcing Bars	QUARE
11-#3	_	-	11-#3	-				-	114	13-#3	13-#3	12-#3	12-#3	11-#3	11-#3	11-#3	11-#3	11-#3	11-#3	11-#3	10-#3	10-#3	10-#3	10-#3	10-#3	9-#3	9-#3	9-#3	9-#3	9-#3	14	Bot.		Mide	-	g Bars	SQUARE EDGE PANEL
8-#4		-	8-#4	5		-	10		14	10-#4		9-#4		-		9-#4	8-#4	8-#4	8-#4	8-#4	8-#4	8-#4	8-#4	8-#4	8-#A	7-#4	7-#4	7-#4	7-#4	7-#4	13	Int.	T	Middle Strip	Each		VEL
-	1.70		2.12	1		-	11	1	3.00	1.97	-	1.83	1.73	1.94	1.76	1.64	1.99	1.81	1.74	1.62	1.98	1.83	1.78	1.69	1	1.84	1.74	1.66	1.62	1.62	1	m	- 10	T	2.3		1
2 1.84	-	1	2 2.12	-		-		-	0.583 c.f./s.f.	1.97	1.12	-		1.17	-	1.64			-	1.62		1	-		-	1.84	-	12	-	1.62	0.541 c.f./s.f.	EC	Location of Panel		Steel (psf)	End Panel	
1.86		1	2.14	-		11		1.69	./s.f.	1.97	1.79	1.85	1.81	1.97	1.78	1.63	1.99	1.81	1.75	1.57	2.00	1.85	1.81	1.68	1 43	1.86	1.76	1.67	1.59	1.59	./s.f.	.c	Panel		sf)	ē	- and -
16	16	16	10	: 0	: 5	10	10	15	7" =	19	19	18	18	17	17	17	16	16	16	16	15	15	15	5	7	14	14	14	14	14	61/2"	(Ħ)	Span		(2)		13
150	100	50	300	002	200	001	150	50	= TOTAL	100	50	100	50	150	100	50	200	150	100	50	250	200	150	100	5	250	200	150	100	50	1	(psf)			(3)		laciar a
14	: =	10		10			: :	10	L THIC	14	10	12	10	14	11	10	15	13	н	10	16	15	13	=	5	16	15	13	=	10	AL TH	(in.)	Sq.	Min.	(1)		dia a
12-#4	10-#4	10-#4	c#-01	13-#4	12-#4	10-#4	10 #4	9-#4	THICKNESS OF	12-#5	14-#4	16-#4	12-#4	16-#4	13-#4	11-#4	10-#5	13-#4	11-#4	10-#4	14-#4	13-#4	11-#4	10-#4	10-#4	12-#4	10-#4	9-#4	9-#4	9-#4	CKNESS	Тор	11	Column Strip	21-12		SQU
11-#3	11-#3	11-#3	11-#3	c#-11	11-#3	c.#-11	c#-11	11-#3	F SLAB	14-#3	13-#3	12-#3	12-#3	12-#3	11-#3	11-#3	12-#3	11-#3	11-#3	11-#3	11-#3	9-#3	10-#3	10-#3	10-#3	9-#3	9-#3	9-#3	9-#3	9-#3	TOTAL THICKNESS OF SLAB	Bot.		1 Strip	4	Reinforc	ARE INTE
8-#4	8-#4	8-#4	0-#4	0 114	8-#4	0-#4	0 11 4	8-#4		10-#4	10-#4	9-#4	9-#4	9-#4	9-#4	9-#4	8-#4	8-#4	8-#4	8-#4	8-#4	8-#4	8-#4	8-#4	8-#4	7-#4	7-#4	7-#4	7-#4	7-#4	-	Тор		Middl	N.S.	Reinforcing Bars	SQUARE INTERIOR PANEL
11-#3	11-#3	11-#3	c#-11	c# 11	11-#J	c#-11	11_#2	11-#3		13-#3	13-#3	12-#3	12-#3	11-#3	11-#3	11-#3	11-#3	11-#3	11-#3	11-#3	10-#3	10-#3	10-#3	10-#3	10-#3	9-#3 0-#3	9-#3	9-#3	9-#3	9-#3	2-14	Bot.		Middle Strip	2	1	NEL
1./0	1.0/	1.67	2.07	200	1.71	1.00	1.80	1.75		1.97	1.75	1.82	1.65	1.91	1.74	1.65	1.98	1.82	1.73	1.67	1.96	1.82	1.75	1.69	1.68	1.82	1.71	1.66	1.65	1.64	1. TEL	1 B	Locat		s	2.30	Grade
1.00	1./0	1.67	2.07	1.70	1.72	1.02	1 83	1.75	0.583 c.f./s.f.	1.97	1.76	1.81	1.67	1.90	1.75	1.65	1.98	1.83	1.74	1.67	1.97	1.82	1.76	1.69	1.68	1.92	1./3	1.67	1.65	1.64	0.541 c.f./s.f.	m	Location of Panel		Steel (psf)	1	de
1.02	1.12	1.67	4.07	300	1.74	1.00	1.9.7	1.75	.f./s.f	1.97	1.77	1.81	1.69	1.90	1.76	1.65	1.97	1.84	1.74	1.67	1.99	1.82	1.77	1.69	1.68	1.92	1./4	1.68	1.65	1.64	.f./s.f.	ĩC	mel		1		

WO WAY FLAT PLATE		SPAN = 181
THICKNESS	Nº2 6.5"	7 - 11
CAPACITY	100 PSF	7.5"
EXTERIOR SO PANEL	100 PSF	1000 255
1.Col 17219		
COL STRID BARS		
TOPERT	12=4	
BOT	9==4	10 ± 4
TOP INT	16#4	10#4
		16214
MID STRIP BARS	-	
Bot	12#3	8#4
TOPINT	9#4	
		9#4
COL SIZE	19"	10" - '
		10
SQ INT PANEL		
COL STRIP BARS		
TOP	16#4	14#4
BOT	12#3	8#4
		0-4-11
MID STEIP BACS		
TOP	9 # 4	9#4
BOT	12#3	8#4
		3-1
Cel SIZE	12"	10"
CHOICE		
	4	DL SIREWOLKS BETTER
		WITH EXISTING
		PARTITIONS

APPENDIX C

This page is intentionally left blank.

ONEWAY FLAT SLAD SPAN = 18' A.3 1 = 3000 ps; CRS1 2002 THICKNESS 5 1/2 " CAPACTY 130 PSF TOP BAR #589" SPACING BUT BAR #5010" SP. TOP BAR #4012" . FREEEND SP. T-S BARS #3011" 52. AREA STEEL inz/ft TOP INT 0,413 BOT 0.372 SLAB W+ 69 PSF


Note: See	191-6" 201-0"	19:-0"	181-0" 181-0"	170	161-01	151-61	141-01	131-0" 131-6"	121-6"	120"	111-0"	101 - 011 101 - 611	19-16	91-01	81-01	71-0" 71-6"	61-01	CLEAK SPAN	our reight their	Steet Water faith	Areas of Top Int.	Spacing (in.)	Temperature Rar	Top Bars Free End Spacing (in)	Bottom Bars Spacing (in.)	Spacing (in.)	Top Bars	Thickness (in.)	$f'_{c} = 3$
See page 7-7 for reinforcing details.			63	1	2.1	;	49	68	91	105	138	207	237	272	363	496	586				0.200	15	#3	#4	#4	12	#4	4	= 3,00
.7 for r			123			45	2025	97	111	127	167	276	314	359	475	645 552	906 761			0.210	0.200	13	#3	#4	#4	12	#4	41/2	3,000 psi
einforci			5 2	40	56	66	88	131	149	169	218	357 248	405	462	808	821 704	967			10.440		12	#3	#4	#4	= =	#4	5	
ing det		41	49	76	86 86	E	140	198 177	222	250	316	492	555	630	823	949		FALIUKED	-		0.266	=	#2	#4	13	14	#5	51/2	
ails.	56	2	94	118	147	163	202	277	308	343	429	554 481	625	709	925					75	0.310	18	#4	#4	#5	12	#5	6	
	80	101	126	155	190 171	209	256	346	383	426	528	674 591	661	858	076			USABLE	-	0.010		17	#4	#4	#5	= =	#5	61/2	
	122 109	1	164	199	241 219	264	320	428	473	524	647	814	916	2	10	2.4		SUPER	-	0.000		15	#4	#4	#5	10	#5	7	
	136 123	1	182	220	266 242	292	353	471	520	575	710	918 792					G LO CA	SUPERIMPUSED		0.332	0.377	14	TA	#4	#6 15	14	#6	71/2	G
	171 155	1	225			352	422	509	617	681	838	933								100		13	#4	#4	#6	13	#6	8	Grade 60
	213	232	275			423	505	605	731	806	987					88		LUND (D		0.400		13	*#	#4	#6	12	#6	81/2	00
	262 241	284	335	395	466	507	602	787	865	952		LE,			074			(psr)		0.440		12	14	#4	#6	= =	#6	0	2
	300	350	409	479	562	610	721	857							Store		Pass	100	2	0.400		18	117	#4	#6	10	#6	91/2	e 0.0000
1968	347	374	437	511	600 554	651	769	999											140	0.400	0.528	17	45	#4	#6	10	#6	10	000
deflection of 1/360	Note: See pag		->	181-01	171-01	161-01	151-0"	141-0"	131-01	121-61	111-6"	101 - 6"	101-011	91-01	81-61	71-01	61-01	LLEAK SPAN		Steel (In/ TL.) pot.	Int.	Spacing (in.)	Temperature Bar	Top Bars Free End	Bottom Bars Spacing (in.)	Spacing (in.)	Top Bars	Thickness (in.)	f. = 3
					28	46	62 54	71 82	106	121	137	200	288	372	489	566	924		0	1	0.240	15	5#	#4	#4 9	10	#4	4	= 3,0
n.	e 7-7 for reinforcing details. corresponding to 1/1.7 tabu			41	56			119	1	-	-	273	1	497	566	873	38			0.000	0.267	13	#2	#4	#4	. 9	#4	41/2	a,uuu psi
	einforci ding to			8	101 90	126		191		262	326	409	555*	723	822		13.2	FA		10.07 2	0.338	12	<i>د#</i>	#4	#5	11	#5	5	
	ng det 1/1.7			130*	157*	189*	232*		347	383	470		1	829	941	1201	192 -	FACTURED USABLE		40	0.413	11	٤# ۲.	#4	#5	. 9	#5	51/2	
	ails.	134*	145*	174*		250*	301*		443	488	538	661	822	000			19.91	USA		14.410	0.465	18	#4	#4	9	00	#5	6	
and a solution	ed sup	165			253			426	513	564	687	847	963	RL	1 1						0.480	17	#4	#4	#6	11	#6	61/2	
- mpo	erimpo	211	229	269	317	373	442	526	629	691	839	928			2 2	1201		PEKIM	00	0.400	0.528	15	##	#4	#6	10	#6	7	
	ad log	268*	290*	342*	403	472	555	656	782	857	941			2.6	AL N			SUPERIMPUSED	-	0.00	0.600	14	#4	#4	#7	12	7#	71/2	G
u, 1000		280	1		441		1	717	854	935	ONG	2				10		LUAD			0.600	13	#4	#4	#7	12	#7	80	Grade ov
	*in col	368	395	457	531	619	724	853	020		Taxy				103			(psr)		0.000	0.655	13	#A	#4	#7	11	#7	81/2	00
	ilated	381	439	508	588 546	685	801 740	943				-			-	121				110		12	#4	#4	15	14		•	2
	i l	485	518	596	688	799	932										121				0.729	18	#5	#4	#8	13	#8	\$1/2	0.0075
span.													1				10.93	1		135	0.790	17	#5	#4	13 8		8	10	2

CONCRETE REINFORCING STEEL INSTITUTE

$$\begin{array}{c} \text{ONE WAY FLAT SUPS} & \text{REAM DESIGN} & A = \\ \hline \\ \text{SEAM SPANSE 211,S' } & f' = Skai & f_{i} = (GO LA! \\ & 17.625 & f_{i} = 2500 \text{ dus} \\ & 17.625 & f_{i} = 2500 \text{ dus} \\ & W_{i} = \left[(U(40) + 1)2(20) + 1.2(26) \right] \left[77+\frac{1}{27} \right] = 2500 \text{ dus} \\ & W_{i} = \left[(U(40) + 1)2(20) + 1.2(26) \right] \left[77+\frac{1}{27} \right] = 2500 \text{ dus} \\ & W_{i} = \left[(U(40) + 1)2(20) + 1.2(26) \right] = 2.89 + 24 \\ & W_{i} = W_{i} \right]^{2} = 2.89(17.625)^{2} = 112.2.9 + 24 \\ & M_{i} = W_{i} \right]^{2} = 2.89(17.625)^{2} = 0.0146 \\ & M_{i} = W_{i} \right]^{2} = 2.89(17.625)^{2} = 0.0146 \\ & M_{i} = W_{i} \right]^{2} = 2.89(17.625)^{2} = 0.0146 \\ & M_{i} = W_{i} \right]^{2} = 2.92(1.053)^{2} = 0.0146 \\ & M_{i} = \frac{1}{9} \int f_{i} \int \int \int f_{i} \int$$

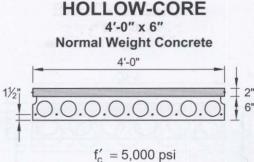
APPENDIX D

This page is intentionally left blank.

Strand Pattern Designation 76-S

S = straight Diameter of strand in 16ths No. of Strand (7)

Safe loads shown include dead load of 10 psf for untopped members and 15 psf for topped members. Remainder is live load. Long-time cambers include superimposed dead load but do not include live load.


Capacity of sections of other configurations are similar. For precise values, see local hollow-core manufacturer.

Key

444 - Safe superimposed service load, psf

0.1 - Estimated camber at erection, in.

0.2 - Estimated long-time camber, in.

 $f_{pu} = 270,000 \text{ psi}$

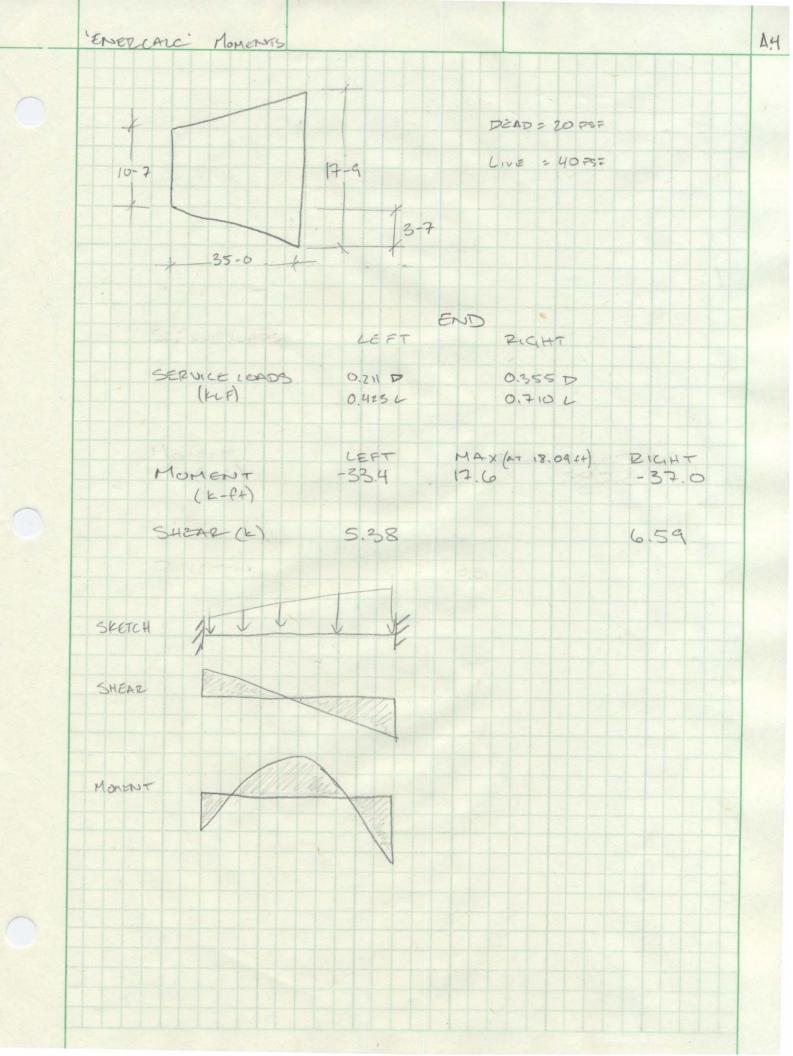
	5	Sectio	n Pr	opertie	S
ι	Into	pped		Торр	ed
А	=	187	in. ²	283	in. ²
1	=	763	in.4	1,640	in.4
Уb	=	3.00	in.	4.14	in.
y _t	=	3.00	in.	3.86	in.
Sb	=	254	in. ³	396	in. ³
St	=	254	in. ³	425	in. ³
wt	=	195	plf	295	plf
DL	=	49	psf	74	psf
V/S	5=	1.73	in.		

4HC6

No Topping

Table of safe superimposed service load (psf) and cambers (in.)

Strand									198	S	pan, f	ft						-		brist	
Designation Code	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	444	382	333	282	238	203	175	151	131	114	100	88	77	68	59	52	46	40	33	28	
66-S	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.0	-0.1	-0.2	-0.4	-0.5	-0.7		
	0.2	0.2	0.2	0.2	0.3	0.3	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	-0.3	-0.5	-0.7	-0.9	-1.2	-1.5	-1.9	
		445	388	328	278	238	205	178	155	- 136	120	105	93	82	73	65	57	49	42	36	31
76-S		0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.0	-0.1	-0.3	-0.4	-0.6
		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.0	-0.1	-0.2	-0.4	-0.7	-0.9	-1.2	-1.6	-2.0
		466	421	386	338	292	263	229	201	177	157	139	124	110	99	88	78	68	60	53	46
96-S		0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.3	0.3	0.1	0.0	-0.1
		0.3	0.4	0.4	0.5	0.5	0.5	0.6	0.6	0.6	0.5	0.5	0.4	0.3	0.2	0.1	-0.1	-0.3	-0.6	-0.9	-1.3
		478	433	398	362	322	290	264	240	212	188	167	149	134	119	107	95	85	76	68	60
87-S		0.3	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.7	0.7	0.8	0.8	0.7	0.7	0.7	0.6	0.5	0.4	0.3
		0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.5	0.3	0.2	0.0	-0.3	-0.6
		490	445	407	374	346	311	276	242	220	203	186	166	148	133	119	107	96	86	78	70
97-S		0.4	0.4	0.5	0.5	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.9	0.9	0.9	0.8	0.7	0.6
		0.5	0.6	0.6	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.0	0.9	0.9	0.8	0.7	0.5	0.3	0.1	-0.2

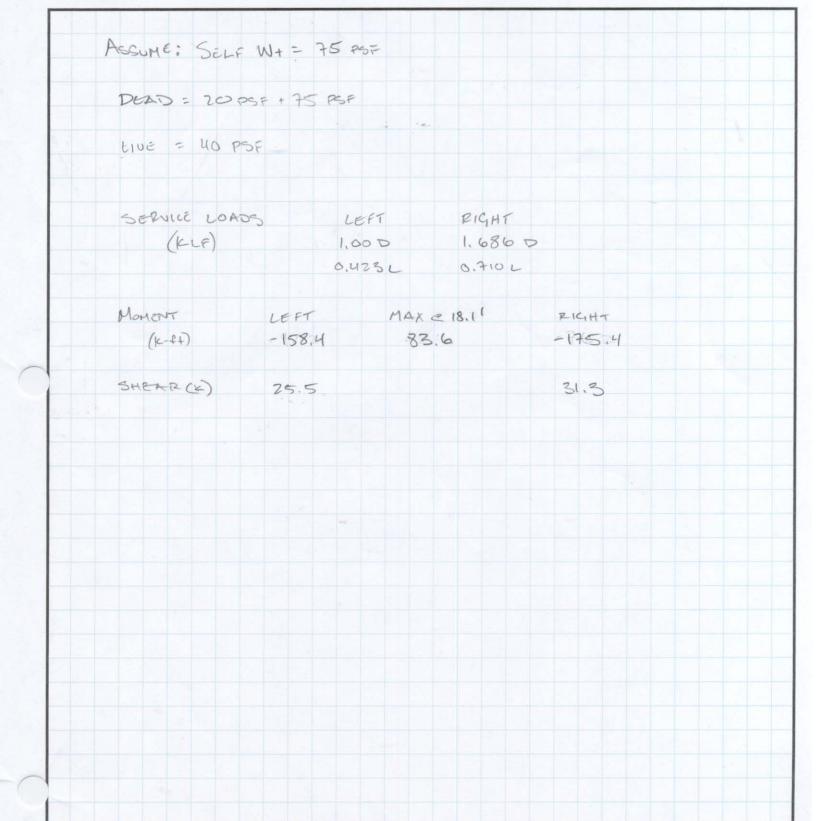

4HC6 + 2

2 in. Normal Weight Topping

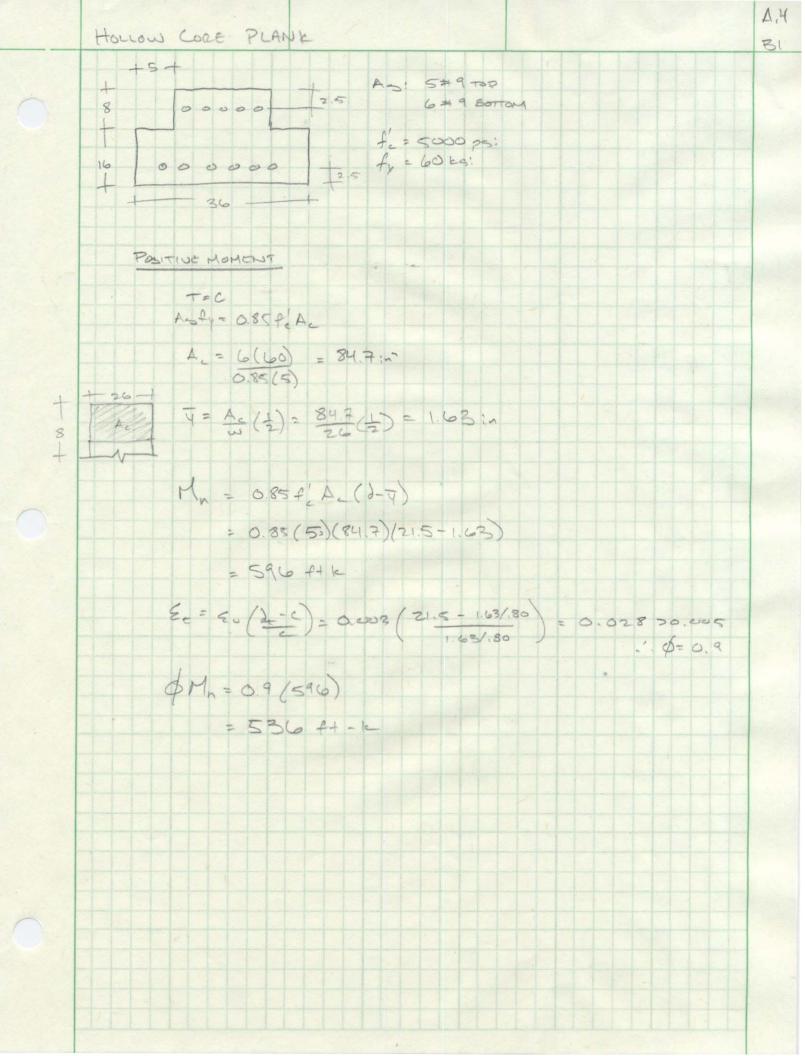
Table of safe superimposed service load (psf) and cambers (in.)

Strand Span, ft Designation 30 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Code 470 396 335 285 244 210 113 93 75 59 34 182 158 136 46 66-S 0.2 0.2 0.2 0.2 0.2 02 0.2 0.2 0.2 0.2 0.1 0.1 0.0 -0.1 -0.2 2 0.2 0.1 0.1 0.0 -0.1 -0.2 -0.3 -0.5 -0.7-0.9 -1.24 287 248 216 188 163 137 115 95 78 63 50 38 27 3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.1 0.1 -0.0 -0.1 -0.3 2 0.2 0.2 0.2 0.1 0.1 0.0 -0.2 -0.3 -0.5 -0.7 -0.9 -1.2 -1.5 4 367 319 279 245 216 186 160 137 116 98 82 68 55 43 33 96-S 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.3 0.1 0.0 -0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.1 -0.1 -0.3 -0.5 -0.7 -1.0 -1.4 -1.7 485 446 415 377 292 258 224 195 169 147 127 109 94 80 67 55 87-S 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.6 0.5 0.4 0.3 0.8 -1.2 0.5 0.5 0.5 0.6 0.6 0.6 0.5 0.5 0.4 0.4 0.2 0.1 -0.1 -0.3 -0.5 -0.8 494 357 288 146 110 95 82 70 455 421 394 327 251 219 192 168 127 97-S 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 1.0 0.9 0.9 0.9 0.8 0.7 0.6 0.6 0.7 0.6 0.5 0.4 0.2 0.0 -0.2 -0.5 -0.8 0.6 0.7 0.7 0.7 0.7 0.7 0.6

Strength is based on strain compatibility; bottom tension is limited to $7.5\sqrt{f_c'}$; see pages 2–7 through 2–10 for explanation.


Atlantic Engineering Services 650 Smithfield Street • Suite 1200 Pittsburgh • Pennsylvania 15222

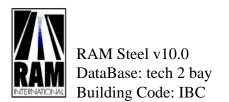
JOB	Hours	N CORE	PLANI	6
SHEET N	10. BB	AM DES	IGN (DF


CALCULATED BY _____

DATE ____

SCALE____

A.4

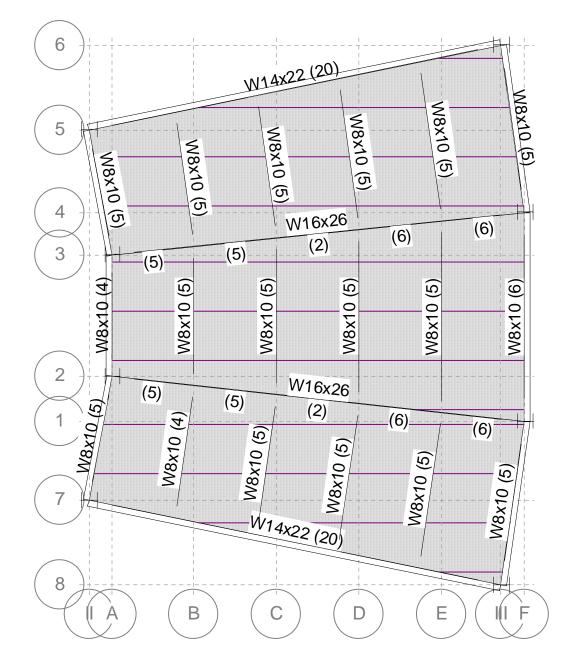

A.4 BZ HOLLOW CORE PLANE NEGATIVE MOMENT T= C Asfy = ass f. AL Ac: 5(60) = 70,6:12 0.85(5) $\overline{Y} = A_{L}(\underline{1}) = \frac{70.6}{36}(\underline{1}) = 1.0$ in Mn = 0.85 f' Ac (d-4) = 0.85(5)(70.6)(21.5-1.0) = 512 A11- $\Sigma_{z} = \Sigma_{z} \left(\frac{\partial_{z} - c}{z} \right) = 0.003 \left(\frac{21.5 - 1.0(.3)}{1.0(.3)} \right) = 0.048 > 0.005$ 1- \$=0.9 \$M_= 09(512) = 461 ft.k

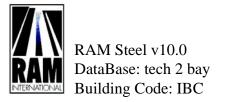
1

Howas all plant
$$A_{22}$$

 A_{32}
 A_{33}
 A_{34}
 A_{34}

APPENDIX E

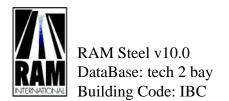

This page is intentionally left blank.


<u>Floor Map</u>

10/25/06 21:57:24 Steel Code: AISC LRFD

Floor Type: 5th floor framing

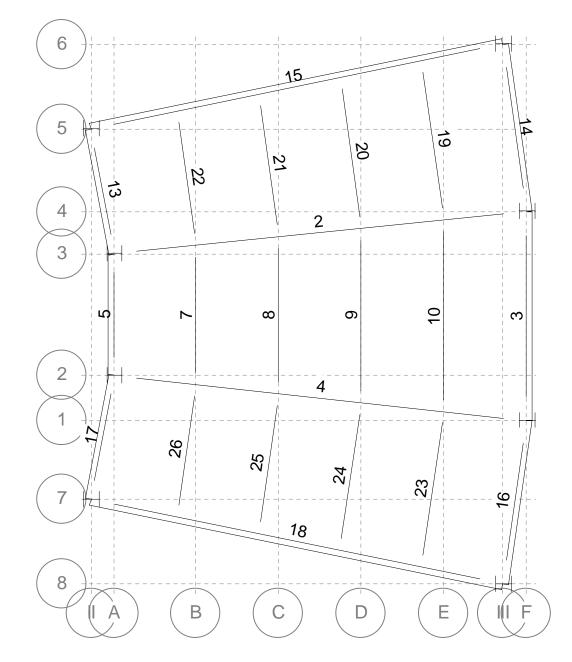
<u>Floor Map</u>

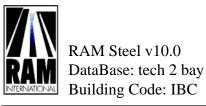

Decks:

Deck Type

VULCRAFT 2.0VL

Page 2/2 10/25/06 21:57:24 Steel Code: AISC LRFD


Orientation 0.00 degrees



<u>Floor Map</u>

10/25/06 21:57:24 Steel Code: AISC LRFD

Floor Type: 5th floor framing

10/25/06 21:57:24 Steel Code: AISC LRFD

STEEL BEAM DESIGN SUMMARY:

Floor Type: 5th floor framing

Bm #	Length	+Mu	-Mu	Mn	Fy	Beam Size	Studs
	ft	kip-ft	kip-ft	kip-ft	ksi		
17	10.77	9.9	0.0	63.4	50.0	W8X10	5
18	35.73	173.8	0.0	259.0	50.0	W14X22	20
13	10.77	9.9	0.0	63.4	50.0	W8X10	5
15	35.73	175.5	0.0	259.0	50.0	W14X22	20
5	10.31	8.8	0.0	63.3	50.0	W8X10	4
4	35.21	306.3	0.0	384.9	50.0	W16X26	5, 5, 2, 6, 6
2	35.18	307.4	0.0	384.9	50.0	W16X26	5, 5, 2, 6, 6
26	11.44	19.2	0.0	64.0	50.0	W8X10	4
22	11.49	19.4	0.0	64.0	50.0	W8X10	5
7	11.80	20.0	0.0	64.0	50.0	W8X10	5
25	12.09	21.1	0.0	64.1	50.0	W8X10	5
21	12.20	21.4	0.0	64.1	50.0	W8X10	5
8	13.29	25.4	0.0	64.1	50.0	W8X10	5
24	12.74	23.4	0.0	64.1	50.0	W8X10	5
20	12.90	24.0	0.0	64.1	50.0	W8X10	5
9	14.78	31.4	0.0	64.2	50.0	W8X10	5
23	13.39	25.9	0.0	64.1	50.0	W8X10	5
19	13.60	26.7	0.0	64.1	50.0	W8X10	5
10	16.26	38.1	0.0	64.2	50.0	W8X10	5
16	14.04	20.8	0.0	63.7	50.0	W8X10	5
14	14.31	21.6	0.0	63.7	50.0	W8X10	5
3	17.75	33.2	0.0	63.9	50.0	W8X10	6

* after Size denotes beam failed stress/capacity criteria.

after Size denotes beam failed deflection criteria.

u after Size denotes this size has been assigned by the User.

	RAM Steel v10.0 DataBase: tech 2 bay
INTERNATIONAL	Building Code: IBC

Load Diagram

10/25/06 21:57:24

• •	5th floor framing ation (ft): I-End (0		n Number = 2 End (35.00,17.7	5)		
Wl	Pl	P2		Р3	₽4	W2
Load	Dist	DL	LL+	LL-	Max Tot	_
	ft	kips	kips	kips	kips	
P1	7.037	6.691	2.541	0.000	9.232	
P2	14.073	7.287	2.767	0.000	10.054	
P3	21.110	7.932	3.012	0.000	10.944	
P4	28.146	8.577	3.257	0.000	11.834	
	ft	k/ft	k/ft	k/ft	k/ft	
W 71	0.000	0.056	0.011	0.000	0.067	
W1						